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The evolution of unsteady boundary layers on the plane of symmetry of a slender 
prolate spheroid in uniform motion at constant angle of attack after an impulsive 
start has been studied for the case of a prescribed pressure distribution. Calculated 
results have been obtained for angles of attack ranging from 30" to 50" and show, 
for example, that the unsteady-state solutions approach the steady-state solutions 
rapidly on the windward and leeward sides for a < a, (z 41"). This is also so on the 
windward side for a > a,. On the leeward side for a > a,, however, the unsteady 
boundary layer is initially unseparated, but develops a region of reversed flow with 
increasing time. Subsequently, the streamwise displacement thickness develops a 
pronounced peak, which leads to a singularity of the type observed by van Dommelen 
& Shen on a circular cylinder started impulsively from rest. 

1. Introduction 
Our knowledge of unsteady boundary layers has been enhanced in recent years by 

a combination of experimental and computational investigations. The former have 
been concerned mainly with the problem of airfoils that oscillate in subsonic flows, 
but include a small number of transonic-flow investigations. The latter have involved 
the solution of boundary-layer equations for flows over cylinders and airfoils, and 
have been concerned largely with the nature of the singularity which occurs near 
separation. Solutions of the Navier-Stokes equations have also been obtained to 
provide an overall understanding of the flow patterns a t  conditions near or a t  
dynamic stall. Useful reviews of previous work have been provided by Telionis (1979), 
McCroskey (1982), Williams (1977) and Cebeci (1982). 

The experimental investigations have been carried out mainly to improve under- 
standing of flow around helicopter rotor blades, and include the low-speed measure- 
ments of McCroskey et al. (1982), Carr, McAlister & McCroskey (1977), Carr & 
McAlister (1983), Young (1982), Geissler (1983) and Cousteix, Houdeville & Janelle 
(1981), and transonic-flow measurements of Tijdeman (1977) and Davis & Malcolm 
(1979). The range of measurements of McCroskey et al. and Carr et al., in particular, 
is extensive, and includes more than fifty combinations of Mach number and 
parameters of the unsteady motion for each of eight airfoil sections. As a consequence, 
four flow regimes have been identified, and correspond to no stall, stall onset, light 
stall and deep stall. It appears that the breakdown of the unsteady boundary layer 
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leads to a large vortex which is formed near the surface a t  large angles of attack and 
causes stall to occur shortly thereafter. 

Computational investigations of oscillating-airfoil flows have been of two main 
types. In  the first, solutions of the Navier-Stokes equations have been obtained, for 
example by Mehta (1977) for incompressible laminar flows and by Shamroth (1981) 
for compressible turbulent flows. Further studies of this type are clearly necessary, 
and results so far show qualitative features of the flow field and lift curves which are 
again in qualitative agreement with experiment. The second approach has involved 
the solution of the boundary-layer equations. The investigations of Cebeci & Carr 
(1981,1983) have reported results for an external velocity distribution typical of those 
found near the leading edge of thin airfoils. The existence of a singularity in the 
solutions is evident in the vicinity of the leading edge a t  the higher angles of attack 
and has led to the subsequent investigations of its nature (see e.g. Cebeci, Khattab 
& Schimke 1983). 

The need for more fundamental investigations of the use of boundary-layer 
equations to represent unsteady flows is clear from the airfoil investigations of the 
previous paragraph. In this connection, the oscillating-flat-plate investigations of 
Cousteix et al. (1981) and the contributions of Telionis & Tsahalis (1974), van 
Dommelen & Shen (1982a, b ) ,  Smith (1982) and Cebeci (1979, 1982) for flow over a 
cylinder impulsively started from rest are particularly relevant. In  addition, Williams 
(1982) and Williams & Stewartson (1983) have made important contributions to our 
understanding of the nature of the singularity and its consequences. Perhaps the most 
important contribution has been that of van Dommelen & Shen (19824, who solved 
the boundary-layer equations in Lagrangian form and revealed the existence of the 
singularity. This result suggests the need for interaction between the viscous- and 
inviscid-flow equations. 

Though a number of studies have been conducted to improve our understanding 
of unsteady two-dimensional boundary layers, very little work has been done for 
unsteady three-dimensional flows. Experimental information is lacking, but the 
similarity between the two- and three-dimensional equations suggests that the 
same phenomena may occur. The three-dimensional boundary layer on a body of 
revolution at angle of attack is obviously more complicated than for airfoils or 
cylinders, but is similar on the line of symmetry, provided that cross-flow gradients 
are taken into account. I n  the case of steady flow past slender spheroids, it  is known 
(see e.g. Cebeci, Khattab & Stewartson 1980) that  separation does not occur on the 
leeward side until well past the maximum thickness if the angle of attack a is less 
than a critical value a, ( FZ 41"), but for a > 01, there is a dramatic change, with 
separation occurring very close to the nose. If the external velocity is prescribed, this 
abruptly terminates the integration. For thin airfoils there is a parallel situation, as 
shown by Cebeci, Stewartson & Williams (1981 a ) ,  but the critical angle is now of the 
order of magnitude of the airfoil thickness. 

In  this paper we report a study of the unsteady boundary layer on the line of 
symmetry to determine the relation between unsteady separation and singularities 
in the solution. For the first step we concentrate on the separation problem and do 
not consider the effect of moving stagnation points, which is important but adds 
considerably to the computational difficulties. The particular problem we study is 
the development of a boundary layer on a thin spheroid in uniform motion at constant 
angle of attack after an impulsive start. Angles of attack ranging from 30" to 50" are 
chosen for this purpose. Of these a = 45" corresponds to nose separation, which is 
marginal, while a = 50" corresponds to a strong steady-state singularity. The 
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problem has been formulated for the general case of spheroids a t  angles of attack and 
specialized to thin bodies, and specifically those for which the thickness ratio r is 
vanishingly small. 

2. Approach 

equation of the spheroid be 
With respect to a cylindrical-polar set of coordinates (2, r ,  8) and origin 0, let the 

r2x2 + r2 = r2, (1) 

where r is a positive number less than unity, which may be regarded as a measure 
of the thickness ratio of the prolate spheroid. Here we have non-dimensionalized the 
coordinates and time t ,  taking the semi-major axis and the velocity a t  infinity to be 
unity. We assume that a t  an infinite distance from the spheroid the velocity of the 
fluid is in a direction lying in the meridional plane at an angle a to its major axis. 
Further we assume that outside the boundary layer the inviscid flow is irrotational 
and attached and neglect the circulation around the spheroid. The achievement of 
our goal of determining the development of the boundary layer, given the mainstream 
velocity, would be an important step forward in the task of predicting the circulation 
around bodies of revolution at  incidence. 

With these assumptions the velocity of slip on the spheroid, according to inviscid 
theory, has components 

where 

i u, = Vo(r) cosacos/?- VBo(r)sina sin/? cos8, 

we = Qo(r) sin a sin 8, 

(3) 

and a is a specified function of time, being constant in the present study, The 
configuration in the meridional plane is illustrated in figure 1, with S the stagnation 
point of the inviscid flow defined by 6’ = 0, x = -{  1 -r2 tan2 u}. 

Turning to the boundary layer, we define (u, vvf ,  w) to be the velocity components 
respectively along the meridional lines 8 = const, along the normals to  the spheroid 
and in the azimuthal direction, where v is the kinematic viscosity of the fluid and 
is assumed small. Then 

a a a 
- (h, u )  + - (h, w) + - (h, h,v) = 0 ,  
ax a0 aY 

11-2 
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FIGURE 1. Notation for prolate spheroid 

where y d  measures distance along the outward-drawn normal from the body, 

h, = , h, = 7(1 -x2): 
1 - 2 2  

are the metric coefficients, 
X 

K, = 
[1+ XZ(72- 1)]i (1 - X 2 ) t  

(9) 

is the geodesic curvature of the surface lines x = const, and$ is the reduced pressure. 
The appropriate boundary conditions are 

u = v = w = O  a t  y=O,  
u+u,, w+w, as y + m .  

The specification of the problem is completed by assigning initial conditions on 
u, w with respect to space and time. The spatial conditions are that on the line of 
symmetry w = 0 and u vanishes for all y a t  that value of x for which u, = 0. This 
is physically and mathematically sensible for impulsive problems in which the 
stagnation point is fixed, but is not necessarily correct when the angle of attack is 
varying with time; see Cebeci & Carr (1981) for example. The temporal conditions 
are that a t  t = 0 both u and w vanish on the body y = 0 on the line of symmetry, 
but are equal to their external values elsewhere. Thus 

( l o b )  1 u = w = 0 a t  y = 0, t = 0 forallx,  

while u= u,, w = we for y > 0 ,  t = 0 andal lx .  

I n  the early studies of the properties of the boundary layers on prolate spheroids 
conducted by Wang (1970) and Hirsh & Cebeci (1977), some difficulty was 
experienced in continuing the solution past the nose a t  x = - 1 ,  primarily because of 
the singularities in the properties of h,, h, and K2 there. A common procedure was first 
to perform the integration along the line of symmetry from the stagnation point to 
as near the nose as possible, and then to jump across the nose to the same value of 
x on the leeside (0  = X )  assuming that the flow properties are essentially unchanged. 
After that ,  integration on the leeside may be continued as far as separation. 
Afterwards the procedure may be extended to more general points in the neigh- 
bourhood of the nose. This technique is effective at moderate values of 7 (7 = 1 
corresponds to a sphere), but leads to  difficulties as r -+ 0, especially a t  high angles 
of attack. Cebeci et al. (1980) demonstrated that the singularity may be removed by 
a suitable transformation of the surface coordinate system, enabling a smootzh 
passage to be made around the nose. The transformation is equally effective for 
unsteady boundary layers, and is now explained for the limiting case of a paraboloid 
which corresponds to 7 = 0. 
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The first step is to define new surface coordinates by 

dS h,dx [1 + x ~ ( T ~ - ~ ) I ~  
dx, -=-- - 

h2 T (  1 - XZ) 

Y t 
X = S c o s 8 ,  Z = S s i n 8 ,  Y = -  T=- 

7 ’  7 2  

with S = 0 at x = - 1 ,  and new velocity components by 

(12) 
V 

u = UcosB+ Wsin0, w = Wcos0- Usin8, v = -. 
T 

The purpose of this transformation is to convert the polar form of (5)-(7) into a 
quasi-rectangular-Cartesian form which is free of singularities. The governing equa- 
tions reduce to 

where p,, p2 are pressure-gradient parameters defined by the requirement that  u+u,, 
w+w, as Y-tco and 

For the paraboloid we let T + O  after defining 

(1  - x2)i 
P = y j  

when S =  exp[(l+pZ)i- 
(1 +p2p+ 1 

S (1 +pZ)fL--l 
P pS( 1 +pz): ’ 

N = - ,  L =  

and so (13)-(15) are independent of T .  We write 
(u, cos 0 -we sin 0, u, sin 8 + w, cos 8) as T +0, and then 

- 2 (I -P+) sin a,  

+- sin a: 

p x  cos a 
S( 1 +p2)$ 

p z c o s a  ZXZLp , 

S(1 +p2): S 

C’, = 

We = 

(19) 

(U,, We) for the limits of 

so’that = N ( U e g +  az +LW,(W,X-U,Z) ,  (22) 

p2 = N (  Ueg+ We%)- az LU,(WeX- U,Z). (23) 

These equations are free of all geometric singularities, and in particular at the nose 
p = 0. There is therefore now no special problem about integrating the equations 
through the nose, although i t  should be noted that the equations are only appropriate 
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a t  distances from it corresponding to p = O(1). This is the natural lengthscale for 
the paraboloid, but in terms of general thin axisymmetric bodies this distance is 
O(77 from the nose. 

Line-of symmetry equations 

These may be deduced from the general form (13) et seq. given above using similar 
arguments to those in Cebeci et al. (1981 b ) .  We shall not repeat them in detail, but 
merely state the transformations and the final form. First we write 

I1 = U 0 ( X ,  Y ,  7’) + 0 ( 2 2 ) ,  T’ = V,(X, Y ,  T )  + 0(22), (24) 

(25)  

and allow for negative values of X by permitting p to become negative. When p < 0 
the sign of S in (18) must be changed, and generally X = Xsgnp in the limit Z-tO. 
On the lecside line of symmetry p < 0. 

We now substitute (24) and (25)  into (13) et seq. and take the limit 2-20.  The 
external velocity components reduce to 

W = Zexp[I-( l+p2)+]  W,(X,  Y , T ) + 0 ( Z 3 ) ,  

p cos a-2 sin a [(i  +p2) i+  11 cos a + 2p sin a 
(26) (1 +p2)1 

W1e = 
(1 +p2): 

Uoe = 

To put the equations into the most convenient form for numerical integration of 
the impulsive problem, with primes denoting differentiation with respect to  7 ,  we 
write 

where f and g are functions o f p ,  y and T. Then 

where 
p -  P (1 +p”i 

a 1 = 2 ( l + p 2 )  (p2+1):+1’  1+(1+p2)4’ 

and the appropriate boundary conditions for f and g are 

I f = f ’ = g  = g ’ =  0 a t  7 = 0, 

f’+1, g’-Wle as y-fco. 

The momentum equations reduce to 

g”’ + ei fg” + $99’’ + P3( f ’ ) Z  + P4(g’)2 + ps f’g‘ + fy2 + p,,yg” 
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where 

I P5 = Ta,  Uoe, P, = Ta,, p? = T(l +p2)*, 4, = TU,,,, (34) 

J P12 = T U;4, + a,  W:, - a, Uo, W,, + (Joe %), c3 = a( 1 +p2)4, ( 2P 
P P a, = ___ 

( 1 +p2)$ + 1 + ( 1 +p2)6. 

These two equations (32) and (33) are in a convciiient form for numerical 
integration, since a t  T = 0, f ,  g and their derivatives are given by 

f ’  = erf ( A T ) ,  g’ = W,, f ’ ,  ( 3 5 )  

where h = +(l +p”):. 

Further, the integration in the direction of increasing p may be assumed to start a t  
the stagnation point p = 2 t ana ,  where f and g are independent of p and satisfy 
partial differential equations in 7 and T only, and proceeds in a straightforward way 
since U,, > 0 when p > 2 tan a. A similar remark applies to the integration in the 
direction of decreasing p, since U,, < 0 when p < 2 tana.  

3. Solution procedure 
The numerical solution of equations ( 3 2 )  and (33) was obtained using the Box 

method, a two-point finite-difference method developed by H. B. Keller and ex- 
tensively used for two-dimensional flows, both steady and unsteady, and for thrce- 
dimensional steady flows. Here we use two versions of the Box method, thc regular 
box in regions where f ’  2 0 across the layer, and the zigzag box in regions where f ’  < 0 
a t  any value of 7. Specifically, in advancing the solution to a new value of T or p ,  
this property off’ determined the choice of the box scheme. The details of the box 
scheme are described in Bradshaw, Cebeci & Whitelaw (1981). 

Calculations of the unsteady boundary layers were carried out for angles of attack 
a of 30”, 40°, 45” and 50”. Provided that flow reversal did not occur, the solution of 
the equations by the regular box was appropriate, no numerical difficulties were 
encountered and the solution was smooth. The step sizes chosen for all computations 
were Ap = 0.2 and AT = 0.2; in selected cases comparisons were made with studies 
using step sizes of Ap = 0.1 and AT = 0.1 or smaller, and the differences were 
negligible. However, once flow reversal occurred, the regular box became prone to 
instabilities and was replaced in this domain by the zigzag box over all 7 and the 
step sizes in p and T were reduced. Various calculations were carried out with a 
non-uniform mesh in p and T i n  the neighbourhood of separation. The smallest value 
of Ap was 0.0005 near the separation point; the step size in T was progressively 
reduced as the calculations proceeded, the smallest value being 0.01. Elsewhere Ap 
was fixed a t  0.2. Comparisons with solutions using larger step sizes gave confidcnce 
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that the results were reliable outside the separated region for T < 7 ,  but that inside 
the separated region smaller step sizes in p and T were necessary to avoid small 
oscillations which developed for T > 5.5 at a = 50". 

4. Results 

components defined by 
The principal properties of the unsteady boundary layers are the skin-friction 

Wi(O,p,  T )  = T-ig"(O,p, T )  = (1 +p2): - mw 
and the displacement thicknesses defined by 

A,(p,T) = Uoe@ lim ( 7 - f )  = ( l+p2)- :  (Uo,-Uo)dY, ( 3 7 a )  

A,(p,T)  = @ lim (7Wle-g) = (l+p2)-: (Wle- Wl)dY. ( 3 7 b )  

7'00 lorn 
sum 

These are displayed in figure 2 for a = 30" when separation does not occur. In figure 
3 we display the properties of Ui for a = 40", a solution that is on the verge of 
separation, and in figure 4 we show all the functions (36) and (37) for a = 50" when 
separation clearly occurs. Where appropriate, the corresponding steady-state results 
o f  Cebeci et al. (1980) are included in these graphs for comparison purposes. 

The graphs show that for p > 0, i.e. on the windward line of symmetry, the 
steady-state solution is rapidly approached as T increases, and is essentially 
established for T > 1. 

For p < 0,  i.e. on the leeward line of symmetry, the flow properties in the steady 
state have two interesting features. First, for any value of a, the cross-flow 
displacement thickness A ,  rapidly decreases with p and soon becomes negative, even 
if separation has not occurred, and in fact is exponentially large and negative when 
p is large and negative. The unsteady data for a = 30" (figure 2 d )  confirm this trend, 
but the limits T finite and p +- co for the unsteady flow and p +- co for the steady 
flow are not interchangeable. The steady-state solution for A ,  becomes exponentially 
large and negative for p > -2,  and the approach of the unsteady solution to the 
steady state has the unusual feature in that for some T, say T > 2, the steady and 
unsteady solutions agree quite well up to some negative p ,  after which the unsteady 
solutions flatten out as they approach p-t-co.  As T increases, the divergence of 
steady and unsteady solutions occur at progressively more negative A,, and as T+ co 
the steady and unsteady solutions agree up to A,+- 00. 

Secondly, the steady-state meridional component Ui of the skin friction does not 
tend monotonically to a limit as p+- co, but even at small values of a has a trough 
followed by a peak due to the overshoot in the external velocity (26). Further, at  
a > a, w 41", Ui actually vanishes at p = p,(a), when p ,  is a point near p = - 1 
depending on the particular choice of a. The solution is singular at this point, and 
the calculation must end. 

The unsteady solution approaches the steady state as T+ co for a < a, (figures 
2 and 3), but more slowly on the windward side. Some overshoot may occur, but it 
is small and may be an indication of a fall-off in accuracy of either the steady-state 
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FIGURE Z(a-c). For caption see p. 324. 
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Steady 
state 

(4 
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FIGURE 2 .  Variation of skin-friction components and displacement thicknesses with p and T for 
a = 30" : ( a )  streamwise skin-friction component; ( h )  circumferential skin-friction component; (t) 
st,reamwise displacement thickness; ( d )  circumferential displacement thickness. 

P 

T =  0.2 - 
state 

FTCURE 3. Variation of streamwise skin-friction component [I; with p and 7' for a = 40". 

or the unsteady solutions. For a > a, (figure 4), the same remarks apply as long as 
p > p,(a) and flow reversal has not occurred. For smaller values of p reversed flow 
occurs and there is no corresponding steady-state solution. If a = 45' separation 
first occurs a t  T = 5.64 when p = - 1.2; i t  remains confined within the range 
- 1.0 > p > - 1.4 and is weak until T = 6, when the computation was terminated. 
Zt might be argued that Wi and A ,  are approaching limit states as T-i-oo, but A ,  
is definitely showing signs of a pronounced negative minimum near p = - 1.2. 

Separation is marginal for a = 45", and so a more extensive computation was 
carried out for a = 50'. In  this case separation set in when T NN 3.71 a t  p = - 1.083, 
and gradually spread out as T increased to  extend around the range 
-0.908 < p < - 1.396 a t  T = 6,  when the calculations became somewhat dubious 
owing to oscillations and instabilities, a behaviour previously observed in relation 
to the circular cylinder started impulsively from rest (Cebeci 1982). The behaviour 
of the separated solutions of U6 for p < - 1 and 4 d T < 6 are shown in figure 
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FIGURE 4(a-c).  For caption see p. 326. 
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1.5 - 

T = 4 . 0  
A2 

P 

-1.0 - 
FIGURE 4. Variation of skin-friction components and displacement thicknesses with p and T for 
a = 50" : (a) streamwise skin-friction component ; (b )  circumferential skin-friction component ; 
(c) streamwise displacement thickness; ( d )  circumferential displacement thickness. 

Q 

-P 
FIGURE 5(a). For caption see facing page. 

5 ( b ) ,  indicating that reattachment occurs in this time interval. It is inferred that, 
after slightly larger time than T = 6, reattachment does not occur, and separation 
approaches that of steady state ( p  = 0.91), as corroborated by figure 5 (a ) ,  where A ,  
develops a rapid growth rate. The curves of A , ,  not shown for p < - 1 in figure 4 (d) ,  
do not develop any unusual features, they become monotonically more negative as 
p decreases, and in addition the curves for 7' > 4 are practically coincident with the 
T = 4 curve to at least p = - 2. Over the range of T considered (T < 6) the variations 
of A ,  and Wi appear t o  remain smooth, but Uh and A ,  develop sharp extrema just 
downstream of separation. 
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FIGURE 5.  Computed results for a = 50": (a )  streamwise displacement velocity; ( b )  streamwise 

skin-frirtion component ; (c) circumferential displacement velocity. 

5. The singularity? 
We now investigate whether the results obtained for a = 50" allow us to conclude 

that when the computation terminated the flow properties are consistent with a 
singularity centred just downstream of separation in the neighbourhood of T = 6. 

Two possible structures for a terminating singularity to the solution have been 
proposed, of which one is due to Smith (1982). I n  his model, the viscous terms are 
significant a t  breakdown, which is a generalization of the Goldstein singularity, and 
both skin-friction and displacement thickness are infinite. No example of such a 
structure has yet been found, and, although we cannot rule out its relevance in the 
present flow, our inclination is to prefer the second possibility, due to  van Dommelen 
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& Shen (1982a), in which the skin friction remains finite while the displacement 
thickness becomes infinite. Strong evidence in favour of the unsteady boundary layer 
on a circular cylinder behaving in the same way has been provided by van Dommelen 
& Shen, Cowley (1983) and Ingham (1984), and on a oscillating airfoil by Cebeci et al. 
(1983). 

The essence of the singularity is inviscid and independent of the pressure gradient. 
Thus, in the case of a two-dimensional boundary layer, with equations 

au av 
ax ay -+- = 0, 

let us suppose the singularity is centred a t  t = to ,  x = x,. Then in its simplest form 
we write 

when 0 < to- t  << 1 ,  lx-xol 4 1, where 

u = -uo+(t,-t)33(Z;,y") (39) 

and the determination of Q reduces to yuadratures. This structure must be matched 
to other structures near y = 0 and as y-+ 00, but the principal gross features can be 
inferred from (39). The displacement thickness has a peak a t  Z = 0 which becomes 
infinite like ( to- t ) - :  as t - t t , .  On the other hand, the skin friction remains finite as 
t - t t ,  for all x. The velocity profile becomes very flat as t + t , ,  provided that .i: - 1, 
with u = -u0 over a length (t,-t)-; normal to the surface, the adjustment to the 
boundary conditions both on the surface and a t  infinity taking p1ac.e over effectively 
finite ranges of values of y. Further details of the structure of the singularity, on the 
basis of a Lagrangian representation may be found in van Dommelen (1981) and in 
Elliott, Cowley & Smith (1983), on the basis of an Eulerian representation as 
exemplified by (38). 

This theory may bc adapted to our problem a t  least in principle. We replace u, 
x, y in (39) by f ' ,  p ,  7, and neglect the left-hand side of (32) in the neighbourhood 
of p = p,, t = to. Then the equation forf' is the same as that for 6 ,  and we may infer 
that f '  is as likely to develop the van Dommelen & Shen singularity as is u in the 
circular-cylinder problem. The displacement thickness A ,  can be expected to develop 
an increasingly sharp peak as t is increased, whereas the corresponding component 
of skin friction Ul, remains finite and smooth. 

The evidence in figure 4 supports these conclusions, but a more severe test is to 
plot the streamwise displacement velocity aAJ3p as a function of p for various T ,  
and this is done in figure 5 ( a )  after smoothing the data for p < -0.95. The results 
of Cowley (1983) for the solution of (38) with u, = sin x show that the singularity 
occurs a t  T x 3.0. The similarities in form are striking; the principal difference being 
a slight drift in i3AJi3p away from separation as T increases. The more detailed plots 
of Ul, in figure 5 ( b )  confirm the smooth behaviour of this function. 

If now we examine (33) we see that the same form for g' may be assumed provided 
that gh is taken equal to f h ,  and again the left-hand side of (33) may be neglected. 
This means that A ,  should also develop a needle-like singularity, and figure 4 ( d )  shows 
no evidence of this. However, plots of aAJi3p as functions ofp  for various T ,  displayed 
in figure S ( c ) ,  show clear signs of the development of a strong minimum, similar to 
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that of Cowley (1983), which does drift towards separation. The alternative possibility 
that  A ,  is finite seems to require that, as r increases, g' has reached the value W,, 
before the inviscid zone r x 1 is reached. Were this the case, the two sides of (33) 
would not balance over this zone, since then f '  x f h  =I= 1 .  

6. Discussion 
I n  this paper we have examined the evolution of the unsteady boundary layer on 

the line of symmetry of a paraboloid that is set impulsively into motion a t  T = 0 with 
uniform velocity and at an angle of attack a. We have shown that if a < a, ( x 41") 
and the steady-state boundary layer exists everywhere on this line, the unsteady 
solution approaches it reasonably quickly and without any significant special 
features. The same is true for a > a, on the windward side. On the leeward side the 
steady-state boundary layer separates, and the solution must terminate there because 
the external pressure gradient is fixed. The unsteady boundary layer is initially 
unseparated, but develops a region of reversed flow after a finite time. A short time 
later the first displacement thickness A ,  develops a pronounced peak, and we advance 
arguments for believing that this is associated with an incipient singularity which 
terminates the calculation. 

The results obtained here are also relevant to other bodies, most obviously prolate 
spheroids, but others as well. Our earlier studies demonstrated that in the 
neighbourhood of the nose the governing equations for a spheroid can be transformed 
into a form in which the paraboloid equations appear as a natural limit (r-tO, see 
(17)) in which the various parameters of the flow remain finite. Hence we may 
confidently expect that any special feature, such as separation, which appears in the 
one will also appear in the other. Wang & Fan (1982) have studied the unsteady 
boundary on a prolate spheroid for a = 45" for a value of r of 0.25, and found that 
the unsteady boundary layer did not separate for any t but that  the steady-statc 
boundary layer separated a t  p = 0.39/7. This result may be in conflict with ours, and 
moreover is a matter of surprise. For not only does a small non-zero r make very 
little difference to our form of the equations, but the result is hard to understand 
in the general context of boundary-layer theory. At present the discrepancy is 
inexplicable. The choice of coordinate systems for integration around the nose does 
seem to be very cumbersome, and it would be interesting to repeat the calculations 
using the system advocated here. For the purposes of this discussion we shall set this 
calculation a t  one side. 

We repeat therefore that in our view the phenomena we have discussed in 
connection with the paraboloid would also appear in a comparable study of prolate 
spheroids. In  particular, the singularity would appear after a finite time in an 
integration of the unsteady equations on the line of symmetry in the neighbourhood 
of the nose and just downstream of separation if a > a,. Generalization of this 
conclusion to the unsteady boundary layer over the whole spheroid is of interest. In  
principle the integration of four-dimensional boundary-layer equations ( x ,8 ,  y, t )  
wavelike with respect to (x ,8 ,  t )  using the Keller-box scheme is no more difficult than 
those for steady two-dimensional flow, provided that we make appropriate 
modifications to account for the varying direction of flow across the boundary layer. 
It just takes longer because there are more mesh points to consider in the (x ,  0, t)-space. 
We may expect that the solution of these equations will develop a singularity on the 
normals to a curve C on the spheroid after a finite time, the precise time varying from 
point to point of C, and i t  will be inviscid in character. Indeed van Dommelen & Shen 
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(1982b) (see also Cowley 1983) have suggested ageneralization of their two-dimensional 
structures which seems likely to be appropriate. From our experience with two- 
dimensional unsteady boundary layers we are confident that the Keller-box scheme 
can carry the integration up to the first onset of the singularity. It remains to be seen 
whether the calculation can be extended beyond this time and over what part of the 
flow field - certainly the front portion of the body can be treated, but the precise 
boundaries are presumably fixed by an application of the Raetz (1957) theory of 
influence regions. 

Finally it is of interest to consider the possible impact of this study on the 
calculation of steady boundary layers on bodies of revolution. The extensive 
computations in 7 on prolate spheroids showed that on the windward part of the 
separation line the flow field develops a Goldstein-Brown (see Brown 1965) singu- 
larity. On the leeside of the ok of accessibility (Cebeci, Khattab & Stewartson 1981 b ) ,  
the calculations for large a must, in general, be terminated by the external streamline 
through the ok, so that the question of the structures of the leeside separation line 
is irrelevant. At small values of a ( x 6") this limitation does not apply, but 
nevertheless the computation breaks down. It is believed that this breakdown occurs 
very near leeside separation, but a reconciliation with the Goldstein-Brown structure 
was not achieved. In particular, the blowing velocity is negative, whereas the theory 
requires it to be large positive. 

A feature of the singularity is that, when t o - t  is small (39), the blowing velocity 
is large and positive as x + x o ,  and after peaking becomes negative in order to bring 
the displacement thickness back to more moderate values. Thus there is some parallel 
here with the leeside separation. Further encouragement to this notion comes from 
the structure (39), which suggests that, in the central regime of the singularity, the 
velocity components are almost constant. If this is the case, in the leeside separation 
singularity the governing equations for steady three-dimensional and unsteady 
two-dimensional boundary-layer flow are effectively the same, and so the assumption 
of a van Dommelen & Shen singularity is as consistent for the one class as the other. 
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